Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Laboratory Medicine ; (12): 52-61, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995697

RESUMO

Objective:To investigate the diagnostic accuracy of serological indicators and evaluate the diagnostic value of a new established combined serological model on identifying the minimal hepatic encephalopathy (MHE) in patients with compensated cirrhosis.Methods:This prospective multicenter study enrolled 263 compensated cirrhotic patients from 23 hospitals in 15 provinces, autonomous regions and municipalities of China between October 2021 and August 2022. Clinical data and laboratory test results were collected, and the model for end-stage liver disease (MELD) score was calculated. Ammonia level was corrected to the upper limit of normal (AMM-ULN) by the baseline blood ammonia measurements/upper limit of the normal reference value. MHE was diagnosed by combined abnormal number connection test-A and abnormal digit symbol test as suggested by Guidelines on the management of hepatic encephalopathy in cirrhosis. The patients were randomly divided (7∶3) into training set ( n=185) and validation set ( n=78) based on caret package of R language. Logistic regression was used to establish a combined model of MHE diagnosis. The diagnostic performance was evaluated by the area under the curve (AUC) of receiver operating characteristic curve, Hosmer-Lemeshow test and calibration curve. The internal verification was carried out by the Bootstrap method ( n=200). AUC comparisons were achieved using the Delong test. Results:In the training set, prevalence of MHE was 37.8% (70/185). There were statistically significant differences in AMM-ULN, albumin, platelet, alkaline phosphatase, international normalized ratio, MELD score and education between non-MHE group and MHE group (all P<0.05). Multivariate Logistic regression analysis showed that AMM-ULN [odds ratio ( OR)=1.78, 95% confidence interval ( CI) 1.05-3.14, P=0.038] and MELD score ( OR=1.11, 95% CI 1.04-1.20, P=0.002) were independent risk factors for MHE, and the AUC for predicting MHE were 0.663, 0.625, respectively. Compared with the use of blood AMM-ULN and MELD score alone, the AUC of the combined model of AMM-ULN, MELD score and education exhibited better predictive performance in determining the presence of MHE was 0.755, the specificity and sensitivity was 85.2% and 55.7%, respectively. Hosmer-Lemeshow test and calibration curve showed that the model had good calibration ( P=0.733). The AUC for internal validation of the combined model for diagnosing MHE was 0.752. In the validation set, the AUC of the combined model for diagnosing MHE was 0.794, and Hosmer-Lemeshow test showed good calibration ( P=0.841). Conclusion:Use of the combined model including AMM-ULN, MELD score and education could improve the predictive efficiency of MHE among patients with compensated cirrhosis.

2.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 1038-1040, 2008.
Artigo em Chinês | WPRIM | ID: wpr-972219

RESUMO

@#Objective To reconstruct tissue-engineered 3D bronchial model using human bronchial epithelial cells and human embryo lung fibroblast as seeding cells, and liquid collagen mixed Matrigel as scaffold. Methods Human bronchial epithelial cells and human embryo lung fibroblast were mixed with liquid collagen supplementing with matrigel and casted in 12-wells plate to reconstruct cells-collagen sheet. Macroscopic observation, phase-contrast microscopy observation, routine HE staining and immunohistochemistry staining(CK ets) were employed to assess the engineered 3D model. Results We reconstructed engineered 3D bronchial model successfully in vitro by tissue engineering techniques and exerted static stretch onto the collagen sheet. From Macroscopic observation, we gained contracted well sheet. We also observed network structure in phase-contrast microscopy meanwhile the viability of cells was fine. HE staining showed the formation of 3D network structure. The immunohistochemistry staining of CK and Vimentin were positive.Conclusion We reconstructed engineered 3D bronchial model successfully in vitro and seeding cells could implement polarity growing in the scaffold materials then gained the network structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA